Root causes: Bioelectronics to restore organ function
Bruns directs the U-M Peripheral Neural Engineering and Urodynamics (pNEURO) Lab, which develops bioelectronic interfaces with the peripheral nervous system to understand systems-level neurophysiology as well as to restore autonomic organ function.
The work of Assistant Professor Tim Bruns has been recognized with a highly competitive National Science Foundation Faculty Early Career Development (CAREER) Award. The five-year award will fund Bruns’ winning proposal, “Modeling dorsal root ganglia: Electrophysiology of microelectrode recording and stimulation.”
Bruns directs the U-M Peripheral Neural Engineering and Urodynamics (pNEURO) Lab, which develops bioelectronic interfaces with the peripheral nervous system to understand systems-level neurophysiology as well as to restore autonomic organ function. Dorsal root ganglia (DRG), which lie near the spinal cord and contain the cells of multiple, converging peripheral sensory nerves, have been an important focus of his research.
“Many peripheral nerves are small and hard to access, so when we’re trying to learn about these sensory systems, recording and decoding signals from the DRG can simplify the process while still giving us important clues about what’s happening,” Bruns says.
But electrodes used to record signals from or stimulate DRG have shortcomings that lessen the efficacy of current and potential therapies and slow research efforts. With the CAREER Award, Bruns will study and model the anatomy and behavior of neurons in the DRG to better understand how they interact with electrodes and, ultimately, improve upon existing technology.
MAPPING DRG
While many researchers have examined individual nerve cells in the DRG, Bruns is one of the first to study their arrangement, electrical behavior, and interactions at a systems level within the DRG.
In work recently published in Journal of Neuroscience Methods, Bruns and lab members found concentrations of nerve cells in different areas of the DRG and demonstrated a novel way to quantify their patterns and distribution.
Through collaborations with U-M Electrical Engineering and Computer Science faculty, his team is using the findings to develop improved microelectrodes, including a new, flexible, non-penetrating thin-film array that better matches the shape of the DRG and may reach more neurons with better long-term viability than current devices.
TOWARD RESTORED BLADDER FUNCTION
In the case of bladder dysfunction, sensory neuron signals recorded from particular DRG can help researchers and clinicians learn more about the bladder’s state. The DRG also can serve as a target for nerve stimulation therapies, including closed-loop systems that provide electrostimulation when bladder pressure approaches a critical threshold.
Bruns’ team is studying the effectiveness of new algorithms to estimate bladder pressure from DRG signals and also has demonstrated the use of microelectrodes to monitor and modulate lower urinary tract behavior from DRG signals and DRG stimulation, both in animal models. These are the first long-term, behavioral experiments examining bladder function at DRG, providing a clearer path towards clinical relevance.
IMPROVING SEXUAL DYSFUNCTION
Some patients using existing bladder pacemakers to improve bladder function have reported improvements in sexual function, too. Bruns and colleagues in the U-M Medical School believe neurostimulation may hold promise as a potential treatment for female sexual dysfunction (FSD). In pre-clinical research, his lab has found that peripheral nerve stimulation can increase vaginal blood flow, a proxy for assessing sexual arousal.
“In terms of importance, these are quality of life issues and incredibly important to patients, yet few researchers are working in these areas,” says Bruns. In collaboration with a urogynecologist in the U-M Medical School, Bruns recently conducted a patient survey to assess interest in neuromodulation for FSD. Over 700 respondents in Michigan completed the survey.
“…THESE ARE QUALITY OF LIFE ISSUES AND INCREDIBLY IMPORTANT TO PATIENTS, YET FEW RESEARCHERS ARE WORKING IN THESE AREAS”Tim Bruns
The team now is leading an active clinical study that runs through early 2018. All three women who have completed the study so far had significant improvement in the Female Sexual Function Index, an assessment tool to gauge key aspects of sexual function in women.
CONTROLLING BLOOD GLUCOSE
In a small, exploratory study of kidney neuromodulation to control blood glucose, researchers in Bruns’ lab have found that stimulation in particular ranges can prevent the organs from reabsorbing sugar and boost glucose excretion from the body. The early findings are laying a foundation for further work to develop potential non-pharmacologic approaches to treating diabetes.
“FSD may affect up to 40 percent of adult women; millions of men and women suffer from bladder control issues; and diabetes affects nearly 10 percent of the U.S. population,” Bruns notes. “As we better understand how nerves control the ways in which our organs function and as we develop new interfaces for interacting with neurons, we’re finding more and more opportunities to improve quality of life for these, and other, patient populations – there’s so much we can do, especially when we work closely with clinicians.
“AS WE BETTER UNDERSTAND HOW NERVES CONTROL THE WAYS IN WHICH OUR ORGANS FUNCTION AND AS WE DEVELOP NEW INTERFACES FOR INTERACTING WITH NEURONS, WE’RE FINDING MORE AND MORE OPPORTUNITIES TO IMPROVE QUALITY OF LIFE FOR THESE, AND OTHER, PATIENT POPULATIONS”Tim Bruns
Bruns’ DRG work is funded by National Science Foundation CAREER Award 1653080, National Institutes of Health NIBIB SPARC grant U18EB021760, and Craig H. Neilsen Foundation grant 314980.