BME student wins first place in poster competition in computational biological systems

Congratulations to U-M BME PhD student Javiera Jilberto Vallejos, who received first place in the category of computational biological systems in a student poster competition, held in conjunction with the 17th U.S. National Conference of Computational Mechanics.

The biennial congress, which happened in New Mexico in late July, is the premier U.S. venue for showcasing the latest research in the broad field of computational mechanics, bringing together top researchers and practitioners in academia, government and industry from around the world. 

Jilberto’s poster focused on developing computational models to understand the relationship between the mechanical environment and cardiomyocyte maturation, which is the variety of changes to cell structure, metabolism, function and gene expression that convert fetal cardiomyocytes to adult cardiomyocytes. She created her poster in collaboration with the Baker Lab, where heart tissue is engineered. 

“They try to understand how mechanics drive cardiomyocyte maturation, but there are a lot of mechanisms that are difficult to quantify, so we need to use a computational approach,” Jilberto explained. “We wanted to quantify how mechanics were changing the things that the team was observing.”

“They have a lot of data and many images,” she added. “So what I did was take all the images and all the functional information that they have to build a very detailed model of these tissues. For example, in cardiac mechanics, what our lab usually does is to create digital twins, where we grab the images from the patient’s heart and we build a virtual model of that heart. For this project, the idea was to do the same–to capture all the data that they have from these tissues and create a model so that we can better understand how the mechanical response is changing and measure quantities that they cannot typically measure experimentally. We can, for example, measure the stress that the cells are generating instead of relying on a global measure of tissue deformation to assess the mechanical function of the tissues.”


This research is conducted as part of an NSF Engineer Research Center (ERC) grant. Jilberto will be starting her fourth year in August as a student of David Nordsletten, Associate Professor, Department of Biomedical Engineering and Cardiac Surgery. The poster competition rubric focused on technical content, clarity and organization, and the question-and-answer section. Jilberto’s poster was first among nine competitors who were selected from a larger group of applicants to compete.


BME Students Triumph in Michigan Business Challenge

by Aimee Balfe, Biomedical Engineering

PreDxion: Reimagining the treatment of organ failure in the ICU

BME medical product development graduate student Walker McHugh (MSE ’17) hopes the device he’s helping bring to market will transform treatment in the intensive care unit.

Called MicroKine, the microfluidic sensor enables doctors to determine quickly and from only a drop of a patient’s blood which cytokines are causing a hyperinflammatory state that can lead to organ failure.

After working on the product and the science behind it for more than a year in the lab of his advisor, Pediatric Critical Care Professor Timothy Cornell, MD, McHugh proposed using the MBC to explore the path to commercialization.

Cornell agreed, and McHugh teamed up with business student Caroline Landau (MBA '16) to form a company, PreDxion, based on an initial application for the device: monitoring cancer patients receiving chimeric antigen receptor T-cell (CAR-T) therapy. CAR-T uses a patient’s own immune cells which have been genetically engineered to recognize a specific protein on tumor cells. Once reintroduced into the body, these cells seek out and destroy the patient’s cancer.

Though this treatment has had promising results, a potential downside is that a patient’s immune system can overreact, producing a flood of inflammatory cytokines which can quickly lead to organ failure. MicroKine can determine in just 30 minutes which cytokines are out of the normal range, allowing doctors to prescribe the specific anti-cytokine medication that matches those elevated in the patient.

The technology has already achieved proof of concept. In late 2014, Cornell’s lab received an emergency use exemption from the FDA to use the device in a patient experiencing cytokine release syndrome in late 2014. The case was a success, and the team began envisioning a larger impact.

That’s what impelled McHugh to throw his hat into the MBC. He hoped to use its structure – the deadlines, the coaching from Zell Lurie, and partnership with a business student – to explore potential markets, walk through financial models, and flesh out a business plan.

Their work has paid off; the team won $30,000 in the MBC, which they will add to awards from The Coulter Foundation and U-M’s Michigan Translational Research and Commercialization for Life Sciences Program, to continue down the path to commercialization. One of the challenges, says McHugh, is that the product is in a new, niche area of the companion diagnostic space, so the FDA and potential drug-company partners need to assess how to approach it. Ultimately, PreDxion hopes it can structure a pharmaceutical-company partnership that could open the door to cooperative clinical trials and marketing efforts.

McHugh is hopeful that the technology will one day be a game-changer. “Things haven’t changed much over the last 25 years in terms of how we treat organ failure in the ICU,” he says. “We’re are still largely limited to supporting the failing organs.  By targeting the inflammatory processes that are actually driving that dysfunction, we hope MicroKine will bring personalized medicine to the ICU.”
Other contributors to MicroKine include Professor Katsuo Kurabayashi and postdoc Pengyu Chen.

The Michigan Business Challenge (MBC) is a campus-wide competition where student teams have the opportunity to develop a business plan, receive mentoring from the Zell Lurie Institute for Entrepreneurial Studies, and win cash prizes to develop their business.

Project MESA: Bringing safety and dignity to mobile gynecological exams

Taking fourth place in the MBC social impact category is a team from M-HEAL (Michigan Health Engineered for All Lives), the U-M student-run organization that brings biomedical engineering to global health work.

The team, which includes several BME undergraduates, used the competition to evaluate its plans to scale up work on a portable gynecological exam table for use by mobile health workers traveling to remote villages.

Evolution of Project MESA portable exam table prototypes: A (2011 original); B (2013 with stirrups), C (2014 with adjustable backrest), D (2016 with integrated backpack).

Called Project MESA, the team has been working with partner clinics and NGOs in Nicaragua since 2010 on iterative designs for the table. They hoped to use the MBC to test their assumptions about producing and distributing the table on a larger scale to make a bigger impact on healthcare delivery.

Project MESA’s business lead, Katherine Chen, says the coaching was invaluable in helping these mostly engineering students think more critically about issues such as customer preferences, pricing strategies, and business models. “Originally, we designed the product to be produced in the U.S. with the idea that it should be repairable with locally available materials,” she says. “But through customer discovery, we learned that most clinics don’t have the resources to do repairs, so we’ve decided to design the table to be more durable in the first place. In addition, we assumed that a distribution channel in Nicaragua would be hard to manage, but the MBC judges encouraged us to explore that option.”

With $1,200 in prize money from the MBC, the team returns to Nicaragua in May to, among other things, talk with local machinists and distributors; delve into how clinics make their purchasing decisions; assess potential market size; develop new partnerships; and solicit feedback on the newest iterations of the table, which better address durability, portability, aesthetics, and patient positioning.

Chen says the MBC is a great resource for BME design students. “Developing the business plan really helps you define your end goal and determine if it’s financially and logistically feasible,” she says. “It helps you gain an even stronger sense of direction for your design.”

Project MESA’s co-lead is BME student Erik Thomas; other members include: Maya Ben-Efraim, Val Coldren, Bansili Desai, Sabrina Deutsch, Samantha Fox, Hannah Heberle-Rose, Steven Houtschilt, Christina Khouri, Jaime Landsman, Lillian LantisJennifer LeeSiri Manam, Andrea Mathew, Keely Meyers, Kyle Morrison, Molly Munsell, Madhu ParigiMonica Patel, Maddie Price, Bharathi Ramachandran, Jen Spiegel, Alejandra Vaquiro Valencia, Shreya Wadwhani, Eldy Zuniga.