BME-in-Practice: Iterative curriculum design

Incubators are common among entrepreneurs to nurture and develop a new product, application, or business idea. Assistant Professor Aileen Huang-Saad is also applying the concept to biomedical engineering practice – and to engineering education – through a novel “instructional incubator” and series of short, experiential courses.

The goal of the instructional incubator is multifaceted: To expose undergraduate and graduate students to diverse career opportunities in and outside academia and, for those who are considering academic careers, to help them gain teaching and curriculum development skills. Employers, too, benefit from BME job candidates who have acquired a set of capabilities rare among BME programs.

“Colleges and universities are realizing the growing need to train a workforce that is innovative and entrepreneurial-minded,” says Huang-Saad, the Department’s first tenure-track faculty member in engineering education who also co-founded the College of Engineering Center for Entrepreneurship. “many programs are more broadly emphasizing hands-on, team- and problem-based learning to increase student engagement and development.”

“Colleges and universities are realizing the growing need to train a workforce that is innovative and entrepreneurial-minded”

Aileen Huang-Saad

Huang-Saad was inspired in part by her own non-traditional path, leaving academia to work in industry and returning as teaching faculty. Along the way, she observed plenty of changes —

limited numbers of faculty positions, increased competition for funding, and many BME and other engineering students who don’t necessarily want to move into more traditional faculty positions. “We need to prepare them to for a multitude of careers, not just academic research,” she says.

Material synthesis

Many students agree, reporting that finding jobs can be challenging and, once they do begin working, they notice a gap between what they’ve learned in school and industry needs and expectations.

Huang-Saad believes the gap in part results from the fact that “students have to take many courses in other disciplines – physics, math, biology, for example – before they take ‘BME’ courses.” Often, that’s not until their junior year. “And then we have limited time to help them synthesize and integrate all of that material and learn about the actual field of BME. We’re not doing as well as we could be,” she says.

Committed to transforming how engineering programs teach, Huang-Saad wanted to do something to bring more hands-on courses to the first- and second-year program. Yet, the facts remain: Faculty tend to come from varied disciplines, often outside of BME, and many have never worked in industry or been mentored as instructors. Few have experience guiding students through the project-based, interactive courses that might provide an edge in the job market.

The situation led her to ask an important question: How do we get discipline-based engineering faculty – faculty who trained as engineers – to understand more about student learning so that they can impact engineering education? “How do we capitalize on the wealth of talent we have here at the university right now?” she asks.

Capitalizing on the wealth of talent

The answer, at least in part, lies in the new incubator course (BME 499/599), in which junior and senior undergraduates, graduate students, post-docs, and faculty conceive of new first- and second-year courses. These one-credit “BME-in-Practice” courses help synthesize BME material and impart important professional engineering skills.

The incubator, first taught in Fall 2017, teaches students about learning, including learning theories, pedagogy, instructional design, constraints when developing curricula, and more. For their final project, student teams develop a curriculum for a one-credit experiential course for first- and second-year students. The following semester, incubator participants, a.k.a. “apprentices,” are given the opportunity to teach the courses they’ve developed.

The resulting courses, developed in Fall 2017 included:

  • Introduction to Neural Engineering and Modeling
  • Building a Tumor, an Introduction to Tissue Engineering
  • Introduction to Medical Product Design Iteration and Validation
  • Introduction to Medical Product Design, Prototyping and Testing (previously titled: Design “Crash” Course: Computer-Aided Design, Rapid Prototyping, and Failure Analysis)
  • Biomechanical Design and Rapid Prototyping
  • Computational Cell Signaling: Roadmap to Drug Development

Three of the six courses were taught in the 2018 winter semester.

Introduction to Medical Product Design, Prototyping and Testing
Introduction to Medical Product Design, Prototyping and Testing (previously titled: Design “Crash” Course: Computer-Aided Design, Rapid Prototyping, and Failure Analysis) taught by Erik Thomas and Madhu Parigi setup a prototype crash test for the first and second year engineering students in the class.

Offering the courses in a one-credit format enabled students to more easily fit one or more into their already heavy first- and second-year schedules. “Having these students participate in BME courses sooner helps them develop a cohort, a community, and get a better sense of what they can do with a BME degree,” says Huang-Saad.

First-year student Raahul Ravi took two of the new short courses, Introduction to Neural Engineering and Introduction to Tissue Engineering, with the aim of gaining “more Biomedical Engineering experience early on in my undergraduate career. It would take several years for me to reach the point where I could take the full courses on these topics, so I signed up for these to see if the areas covered interest me,” he says.

They did. “Taking the incubator courses has shown me more of what a professional in Neural engineering and Tissue/Tumor Engineering studies and works on. I’m still on the fence about what I want to do after undergrad – grad school, work in industry, etc. – but I know much more about the different career fields open to me with my education in BME after taking them,” he adds.

“Taking the incubator courses has shown me more of what a professional in Neural engineering and Tissue/Tumor Engineering studies and works on.”Raahul Ravi

Learning about learning

The incubator followed a carefully planned curriculum. Each week students spent one class session focused on learning and pedagogy and the second session working in teams to create the new courses. Students also attended master classes, where they observed an experienced instructor and reflected on their observations. They interviewed industry professionals about their work and expectations when hiring students, and they interviewed faculty not only at U-M but across the country.

During the second part of the course, BME Assistant Professor Kelly Arnold, a systems biologist, taught a class in which she asked students to apply ordinary differential equations to a particular problem, receptor-ligand binding, and model the process using MATLAB. Once students completed the assignment, they reflected on the experience to help them better understand the difference between novices and experts.

Finally, during the last part of the course, students completed their short-course curricula, following two key criteria: First, courses had to integrate at least two disciplines, for example, math and biology or electrical engineering and molecular biology. And second, courses had to include the acquisition of a tangible skill, such as CAD, Autodesk Fusion 360, or LabVIEW, that students could use toward solving critical BME problems.

Gaining a competitive advantage

Building specific skills was critical to the BME-in-Practice concept. “At the end of the day,” says Huang-Saad, “you can’t get a job by just telling someone you’re a great critical thinker; you need to be able to plug in and add value from the minute you hit the ground.”

Second-year student Regan Bernstein agrees. “As a sophomore, I didn’t really have any technical skills that would set me apart from anyone else bombarding the companies at the Career Fair. In BME, students don’t get experience with lab work, 3D modeling, or many other vital skills companies are looking for until later in their college career. These modules gave me the skills I needed to comfortably speak with recruiters and confidently say I had the skills they were looking for.” Bernstein hopes that by taking the courses, she’ll have set herself up for “meaningful and successful” internship opportunities early on.

Rave reviews

Not surprisingly, the incubator earned high marks from the students who participated, with evaluation scores near 5.0 in several areas, including course excellence, advancement of students’ subject matter understanding, increased student abilities, and whetting students’ appetites for learning more about the subject matter.

The first class of BME Instructional Incubator instructors.

The incubator course gave recently-hired Lecturer Barry Belmont a more nuanced understanding of teaching and learning, helping him further ground his “own teaching in theoretical framework mentalities” to better guide students as they internalize new material in conjunction with new behaviors and connect those ideas and behaviors with previously learned concepts. “The incubator class has led me to other teaching seminars and engineering education opportunities, which are both career aspirations and goals,” he adds.

Doctoral candidate Karlo Malaga took the incubator because he intends to pursue a career in teaching after earning his doctorate. The opportunity to “design and develop a course from the ground up, [and] to actually launch and teach it is truly unique, and I think it will strengthen my application when it comes to applying for future jobs.”

Malaga found the experience, in a word, he says, “humbling. I found out first-hand just how much work can go into creating a course. By far the most enjoyable part of the experience for me was seeing the course that I had spent all semester working on come to life.”

Malaga taught Introduction to Neural Engineering and also presented his incubator work at an American Society for Engineering Education regional conference. He describes the incubator and teaching experiences as a turning point. “At the end of the day, it reaffirmed to me that I was on the ‘right’ career path since I enjoyed every aspect of teaching and developing the course.”

“…it reaffirmed to me that I was on the ‘right’ career path since I enjoyed every aspect of teaching and developing the course.”Karlo Malaga

Huang-Saad is now working with School of Education graduate student Jacqueline Handley and BME graduate student Cassandra Woodcock to conduct qualitative research to evaluate the impact of the incubator model on undergraduate and graduate students and industry participants, including pre- and post-course surveys, focus groups, and interviews.

Iterative design for curriculum and faculty development

Going forward, the incubator will serve as an iterative design tool for the BME curriculum. “Because we’re constantly reaching out to stakeholders about their needs, expectations, and opportunities for BME students, our students will always be at the leading edge of what technologies are being used and what questions are being asked,” says Huang-Saad. “In effect, we’re creating a sustainable process for integrating career guidance into our undergraduate and graduate programs.”

The incubator also has the potential to become a valuable resource for new faculty, helping them better understand the Department’s curriculum and offering direction and mentorship as they think about new courses to develop and new ways to teach existing and core courses.

When asked about her vision for success of the incubator, Huang-Saad lays out the following scenario: “What I’d most like to see is, when employers in industry, government, or academia are looking for BMEs to hire, they’re going to look to U-M graduates. Not only because our students are incredible interdisciplinary researchers, but also because many of them will have had an opportunity to gain new skills and learn something about teaching – they’ve had a mentored approach to helping others learn.”

“What I’d most like to see is, when employers in industry, government, or academia are looking for BMEs to hire, they’re going to look to U-M graduates.”Aileen Huang-Saad

For more information on the instructional incubator or BME-in-Practice courses, visit teel.bme.umich.edu/projects/incubator and teel.bme.umich.edu/bme-in-practice-courses.


Biomedical engineering student named to 30 Under 30

By Gabe Cherry
Michigan Engineering

University of Michigan biomedical engineering doctoral student Barry Belmont has been named to Manufacturing Engineering Magazine’s 30 Under 30 list. Published annually, the list recognizes the best and brightest manufacturing professionals under 30 years old.

The magazine chose Belmont, 27, for his accomplishments in developing and manufacturing new devices, including the wearable circulation sensor he’s developing to track circulating blood volume in hospital patients.

Manufacturing Engineering also recognized his teaching accomplishments as a graduate student instructor; he taught a course in biomedical engineering innovative design and quickly earned a reputation as an inspiring–and demanding–instructor.

In addition to his work as a graduate student instructor, Belmont participates in a variety of efforts to build interest in science and technology, including creating videos that promote engineering and participating in STEM outreach programs with K-12 students.

“I think there’s a definite need for us to understand science and technology better than we do,” he said in an interview with Manufacturing Engineering Magazine, “To know the world around us—and the people in it—is a worthwhile pursuit…and I want to convince others of that.”

A U-M biomedical engineering graduate student since 2011, Belmont’s research focuses on non-invasive medical imaging and medical device manufacture. He is a member of the American Society of Mechanical Engineers.


Wearable fluid status sensor could lead to new ‘vital sign’

By Gabe Cherry
Michigan Engineering

A wearable sensor being developed at the University of Michigan could provide doctors with the first simple, portable, non-invasive way to measure fluid status—the volume of blood that’s coursing through a patient’s blood vessels at any given time.

Fluid status is a diagnostic measure much like heart rate or blood pressure. It can alert doctors when a cardiac patient has excess fluid that prevents their heart from pumping efficiently or provide a more precise measure of how much waste fluid to filter out of a dialysis patient’s blood. It can also tell doctors how much fluid to give to a trauma patient who has lost blood or a septic patient with an overwhelming infection.

But today, getting an accurate measure of fluid status requires an ultrasound or the insertion of a specialized catheter that measures the pressure of blood flowing through a blood vessel. Both tests are expensive and complex, and must be administered in a hospital by an expert.

The new sensor could change that by making measuring fluid status as simple as strapping a smartphone-sized device to a patient’s arm or leg and asking them to take a deep breath. And because it can be worn for extended periods of time, the device could provide doctors and caregivers with an unprecedented amount of real-time data about fluid status. Researchers will soon begin patient testing.

two people

two people

×

“Our new sensor doesn’t require a lot of time or expertise, so it could be used in an intensive care unit, a small community clinic, an ambulance, by a patient at home, at an accident scene or even on the battlefield,” said Barry Belmont, a biomedical engineering doctoral student at U-M who is helping to develop the technology.

 “And it provides continuous, real-time data, which is wasn’t possible in the past.”

The device works uses a process called Dynamic Respiratory Impedance Volume Evaluation, or DRIVE, to measure the changes in “bioimpedance,” or electrical conductivity, of the wearer’s limb as they breathe. Blood is an excellent conductor of electricity, so a patient with more blood will have greater conductivity. It’s similar in principal to the ultrasound method of measuring fluid status, which directly measures the changes in the vena cava, the body’s largest vein. But instead of measuring vein size to calculate fluid status, the new device gets the same information by measuring bioimpedance. The new device isn’t the first to use this approach, but it’s the first to incorporate fluid status measurement into a wearable device.

The researchers say their technology could effectively make fluid status another vital sign.

“This could turn fluid status into a routine diagnostic tool, the way we measure heart rate and blood pressure today,” said Kevin Ward, executive director of the U-M Center for Integrative Research in Critical Care (MCIRCC), which developed the concept and the device. “It has the potential to improve care and lower costs for millions of patients, and I think it’s a great example of how collaboration between fields like engineering and medicine can have a direct benefit on the lives of patients.”

The team has been testing a benchtop version of the sensor, built from off-the-shelf components, for more than a year. The new study will compare the accuracy of the wearable sensor to that of the conventional ultrasounds of the vena cava in patients undergoing dialysis or intensive care.

Current measurements like heart rate and blood pressure are diagnostic measurements that have been in place for decades or more. These methods don’t address accurately the issue that patients experiencing trauma, undergoing dialysis, or septic patients commonly have in that they can't capture the amount of blood flowing through a patient's blood vessels.

“Right now, doctors don’t have a good way to determine how much fluid to remove from a dialysis patient,” explains Hakam Tiba, a research investigator in the Department of Emergency Medicine at the U-M Health System. “They often end up removing too much, which can cause pain and fatigue, and it can also exacerbate other health problems. A wearable sensor would enable doctors to be much more precise by providing a real-time picture of the effect that dialysis has on a patient.”

A real-time stream of fluid status data could also help doctors provide better treatment to patients who need additional fluid, like sepsis patients, Belmont said. He expects the current round of testing to continue through the end of 2015. If the tests are successful, the device will go to the FDA for approval, which will likely take an additional two years before it’s available for broad use.

Funding and assistance for the project was provided by the University of Michigan Medical School’s Fast Forward Medical Innovation Translational Research and Commercialization for Life Sciences Program, by the University of Michigan Center for Integrative Research in Critical Care and by Baxter Healthcare Corporation.